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Abstract
The nonferrous metallurgy industry is a major energy consumer in China, and accurate energy consumption forecasting
for the nonferrous metallurgy industry can help government policymakers with energy planning. For this purpose, a hybrid
support vector regression (HSVR) with an adaptive state transition algorithm (ASTA) named ASTA-HSVR is proposed to
forecast energy consumption in the nonferrous metallurgy industry. The proposed support vector regression (SVR) model
consists of a linear weighting of ε-SVR and ν-SVR. The ASTA was developed to optimize the parameters of the HSVR. Two
cases of energy consumption from the nonferrous metallurgy industry in China are used to demonstrate the performance of
the proposed method. The results indicate that the ASTA-HSVR method is superior to other methods. In this study, a hybrid
support vector regression with an adaptive state transition algorithm (ASTA-HSVR) was developed and successfully applied
to energy consumption forecasting for the nonferrous metallurgy industry. However, it should be noted that the outliers were
not considered in this study. In the future, we expect to extend the ASTA-HSVR method to include energy consumption
forecasting problems with outliers.
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Introduction

Nonferrous metals are indispensable materials for the
development of modern industry, modern national defense,
and modern science and technology. The main task
of nonferrous metallurgy is to refine them from their
original sources through complex physical and chemical
processes. Hence, the nonferrous metallurgy industry is
of importance in the national economy. However, with
the rapid development of the Chinese economy, the
nonferrous metallurgy industry has become one of the seven
major industrial energy consumers in China. In 2012, the
power consumption of the nonferrous metallurgy industry
accounted for 7.67% of the total power consumption
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in China, and 10.54% of the total industrial power
consumption. In the electrolytic aluminum industry, 500
billion kilowatt-hours of electricity and 180 million tons
of standard coal are consumed every year. The copper-
smelting industry consumes 300 kg of standard coal per
ton of copper produced. Notably, the energy consumption
of the nonferrous metallurgy industry is still growing
from a high base, and the energy consumption structure
of it is also changing dynamically. Thus, studying an
energy consumption model of the nonferrous metallurgy
industry has practical significance. This is expected to
help government policymakers with energy planning and
drafting energy policy, and thereby, to improve the
relationship between energy supply and demand.

In recent years, numerous methods including such as
neural networks and kernel-based methods have been
proposed for use in forecasting energy consumption.
Limanond et al. [10] forecast the transportation energy
consumption in Thailand using log-linear regression models
and feed-forward neural network models. Meng et al. [13]
proposed using the partial least squares method to forecast
the annual electricity consumption of China. Yuan et al.
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[26] forecast China’s primary energy consumption using
the ARIMA (autoregressive integrated moving average)
model and GM(1,1) (Grey model). Szoplik [19] presented
artificial neural networks (ANN) to forecast the natural
gas consumption in Szczecin (Poland). Ruiz et al. [16]
forecast the energy consumption in public buildings using
Elman neural networks (ENN) with a genetic algorithm
(GA). Xiao et al. [24] developed a hybrid model based on a
selective ensemble to forecast energy consumption in China.
Chen et al. [3] proposed a hybrid support vector regression
model to predict the short-term electric demand in the
building sector. To summarize, many models are available
for forecasting energy consumption. Among them, support
vector regression (SVR) and neural networks (NNs) are
both currently research hotspots [4, 12]. However, the main
disadvantage of NNs is also apparent, that is, their lack of
interpretability, slow convergence, and plunging into local
optima easily. Hence, SVR is a more promising method
to be applied to forecast energy consumption. Moreover,
the superior performance of SVR has been demonstrated
in many applications [2, 15, 21, 22, 25], because SVR
is theoretically guaranteed to achieve the global optimum
by implementing the structural risk minimization principle.
However, in the nonferrous metallurgy industry, one
characteristic of the energy consumption data is that they
have different time scales, which leads to a problem: a single
SVR model cannot be applied to forecasting on different
time scales. In addition, the performance of the SVR relies
too much on the selection of its parameters.

State transition algorithm (STA) is a novel intelligent
optimization method, and the powerful global search ability
and flexibility of STA have been demonstrated in many
real-world applications [5–9, 27–30, 32–34]. For instance,
Zhang et al. [27] presented a new STA to select the
optimal fractional-order PID controller parameters. Han
et al. [6] developed an STA-based method to solve the
multi-threshold image segmentation problem. Huang et
al. [7] investigated a novel dynamic optimization method
based on the STA to control zinc powder in the copper
removal process. Zhou et al. [30] introduced a stochastic
intelligent optimization method based on the STA to solve
the sensor network localization problem. Hence, the STA
is a promising method for optimizing the parameters of
the SVR. In addition, in [8], Huang et al. used a novel
cognitively inspired computing method based on the STA
to obtain an approximate optimal solution for the linear bi-
level programming problem. Thus, it is important to solve
practical problems using a method like STA that associated
human intelligence and nature cognition.

In this study, in order to solve the above problem, a
hybrid support vector regression (HSVR) with an adaptive
state transition algorithm (ASTA) named ASTA-HSVR, was

proposed to forecast energy consumption in the nonferrous
metallurgy industry. On the one hand, for improving the
generalization ability on different time scales, a hybrid
support vector regression forecasting model was presented,
which consists of a linear weighting of ε-SVR and ν-SVR.
On the other hand, in order to optimize the parameters of the
HSVR, an adaptive state transition algorithm was developed
based on the STA. Finally, two cases of energy consumption
from the nonferrous metallurgy industry in China are used to
demonstrate the performance of the proposed method. The
novelty and main contributions of the proposed method are
highlighted as follows:

– A hybrid support vector regression model with adaptive
state transition algorithm (ASTA-HSVR) is presented
to forecast energy consumption in the nonferrous
metallurgy industry.

– An adaptive state transition algorithm is proposed for
parameter tuning of the hybrid SVR model including
the weights.

– The proposed ASTA-HSVR method is compared with
the HSVR in combination with other meta-heuristics
algorithms and the non-iterative algorithms.

– Two cases of energy consumption from the nonferrous
metallurgy industry in China are forecast using the
proposed ASTA-HSVR method.

The rest of this paper is organized as follows.
Section “Energy Consumption in the Nonferrous Metal-
lurgy Industry” introduces the energy consumption in the
nonferrous metallurgy industry. Section “The Proposed
Hybrid Forecasting Method: ASTA-HSVR” presents the
proposed hybrid forecasting method. Section “Case Study
from the Nonferrous Metallurgy Industry” describes the
efficiency of the proposed method via two cases of energy
consumption in the nonferrous metallurgy industry. Finally,
Section “Conclusions” presents the conclusions drawn from
the work.

Energy Consumption in the Nonferrous
Metallurgy Industry

The term nonferrous metallurgy refers to the production
activities of extracting common nonferrous metals from raw
nonferrous metal sources such as nonferrous minerals and
discarded metals by methods such as smelting, refining,
or electrolysis. The nonferrous metallurgy involves the
smelting of aluminum, copper, nickel, lead, zinc, rare earth,
gold, silver, and other metals. Because of their unique
properties, nonferrous metals have been widely used in
modern industrial production and are an important part
of it. However, the nonferrous metallurgy industry has
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become one of the seven major industrial energy consumers
in China. The energy consumption of China’s nonferrous
metal industry is mainly concentrated in three fields:
mining, smelting, and processing. China’s nonferrous metal
mineral resources are characterized by the following four
qualities: (1) more small mines and fewer large ones; (2)
more lean ore and less rich ore; (3) more cogenetic ore
and less single metal ore; (4) more refractory ore and
less easy-to-process ore. These properties lead directly
to high energy consumption. The nonferrous metallurgy
industry’s power consumption accounted for 8% of the
total power consumption in China annually and was
11% of the total industrial power consumption. With the
continuous expansion of the overall scale of production
in the nonferrous metallurgy industry, the total energy
consumption is still increasing. Thus, studying an energy
consumption model of the nonferrous metallurgy industry
has practical significance and could help government
policymakers to draw up energy plans, improve energy
policy, and refine the relationship between energy supply
and demand.

The energy consumption data in nonferrous metallurgy
industry is characterized by the following three qualities: (1)
multi-modal, (2) strong correlation, and (3) high throughput.
This study focuses on the first of these. Unlike typical
business datasets, in the nonferrous metallurgy industry,
the datasets contain energy consumption data for a single
piece of equipment that is accurate to a minute or hour,
energy consumption data for a single factory that is accurate
to a day or week, and energy consumption data for a
single industry that is accurate to a month or year. This is
determined by the nature of the industry. For instance, in
the electrolytic aluminum industry, a factory worker pays
attention to the production by equipment in real time. When
collecting the data, the time interval of data is accurate to a
minute. However, a senior manager is more focused on the
business strategy and needs to see datasets that are accurate
to a month or year because it is the trends in the data that
are most important. Hence, the characteristic of the energy
consumption data is that it has different time scales. Figure 1

shows an example of two datasets at different time scales in
the nonferrous metallurgy industry. The time interval of the
left figure is a year and that of the right one is a month. In
the next section, we present the method proposed to handle
the problem.

The Proposed Hybrid ForecastingMethod:
ASTA-HSVR

Hybrid Support Vector Regression (HSVR)

Support vector regression (SVR) is an important kind of
machine learning method for regression problems, which
was derived from the concept of a support vector machine
(SVM). The difference between SVR and a SVM is that
SVR has an extra ε-insensitive loss function. Detailed
information regarding SVM or SVR can be found in the
book [23]. Given a learning sample set D = {(xi, yi), i =
1, ..., m}, where xi ∈ Rn are the input vectors, yi ∈ R1 are
the corresponding output values, and m is the number of the
samples. The goal of SVR is to find an appropriate mapping
f (x) between the input sample xi and the output sample yi .
The f (x) can be described as follows:

f (x) = wT ϕ(x) + b, (1)

where w and b are the parameters of the function, and ϕ is
a nonlinear function that maps the input features to a higher
feature space. The ε-insensitive loss function Lε is defined
as:

Lε(xi) =
{
0 if |yi − f (xi)| ≤ ε
|yi − f (xi)| − ε otherwise

, (2)

where ε ≥ 0. The objective of this function is to measure
empirical error. The parameter ε defines the “tube.” When
the two slack variables, ξi and ξ∗

i , are introduced to
represent the distance of the yi and y∗

i from the upper and

2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

0

1000

2000

3000

4000

5000

6000

P
ow

er
 c

on
su

m
pt

io
n(

T
W

h)

2015-12 2016-05 2016-10 2017-03 2017-08 2018-01 2018-06
Month

200

300

400

500

600

P
ow

er
 c

on
su

m
pt

io
n(

T
W

h)

Fig. 1 Example of two datasets at different time scales



Cogn Comput

lower bound of the “tube” respectively, the SVR model is
transformed to an optimization problem, which is shown as
follows:

min R(w, ξ, ξ∗) = C
m∑

i=1
(ξi + ξ∗

i ) + 1
2‖w‖2

s.t .

⎧⎪⎪⎨
⎪⎪⎩

yi − wT ϕ(xi) − b ≤ ε + ξi

wT ϕ(xi) + b − yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0

C > 0

(3)

The above SVR was put forward by Vapnik [23] and
is called the ε-SVR. Later, an improved SVR model, ν-
SVR, was proposed by Scholkopf et al. [17]. It used
a new parameter ν ∈ (0, 1) to control the number of
support vectors in the optimization process. Equation 3 is
transformed to the following optimization problem:

min R(w, ξ, ξ∗, ε) = C(νε +
m∑

i=1
(ξi + ξ∗

i )) + 1
2‖w‖2

s.t .

⎧⎪⎪⎨
⎪⎪⎩

yi − wT ϕ(xi) − b ≤ ε + ξi

wT ϕ(xi) + b − yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0

C > 0

(4)

Both optimization problems can be solved by introducing
two Lagrangian multipliers ai, a

∗
i and a kernel function

K(xi, xj ). The final regression function is as follows:

f (x) =
m∑

i=1

(ai − a∗
i )K(xi, xj ) + b. (5)

The two SVR models mentioned above have been
successfully applied to many applications. However, in this
study, the characteristic of the energy consumption data in
the nonferrous metallurgy industry is that it has different
time scales. In other words, the time intervals of these data
are different. For instance, the power consumption dataset
for the nonferrous metallurgy industry contains yearly data
from 2000 to 2015, and the power consumption dataset
in the electrolytic aluminum industry consists of monthly
data from January to December in different years. Hence,
a hybrid support vector regression (HSVR) is presented to
solve this problem. The HSVR model is shown in Fig. 2,

which contains a linear weighting of ε-SVR and ν-SVR. ω
is a parameter to control the weights.

The performance of SVR is very sensitive to the
selection of its parameters and the hybrid model is
no exception. The main parameters that need to be
selected are listed below: (1) the kernel function, (2) the
regularization parameter C, (3) parameters of the kernel
function, and (4) the tube size of the ε-sensitive loss
function. In addition, ω in the hybrid model also needs
to be optimized. Therefore, another goal of this study
was to automatically determine these parameters in the
hybrid model. For this purpose, the adaptive state transition
algorithm is proposed to solve the above problem. This
is a novel, cognitively inspired optimization method. In
the next section, we describe the adaptive state transition
algorithm.

Adaptive State Transition Algorithm (ASTA)

The state transition algorithm (STA) is derived from the
state-space representation in control theory and establishes
a unified form of solution generation based on two concepts
of the theory: state and state transition [31]. In STA, each
state is a solution in the optimization process and the process
of updating the solutions is called state transition. Moreover,
the unified form of the generation of solutions can be shown
as follows:

{
xk+1 = Akxk + Bkuk

yk+1 = f (xk+1)
(6)

where xk represents a state, Ak and Bk are the state
transition matrices, and f is the evaluation function.

The main idea of the STA is summed up as follows:
(1) produce an initial solution, which is an original state.
(2) Generate a number of candidate solutions using state
transformation operators according to the current state.
(3) Select the current best solution as the new state
according to the fitness function, which is a state transition.
(4) Loop steps 2 and 3 until the termination condition
stops. In addition, there are four state transformation
operators in the STA, that is, rotation transformation,
translation transformation, expansion transformation, and

Fig. 2 Hybrid support vector
regression model
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axesion transformation, of which the expressions are shown
in Eq. 7, respectively.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = xk + α 1
n‖xk‖2 Rrxk

xk+1 = xk + βRt
xk−xk−1

‖xk−xk−1‖2
xk+1 = xk + γRexk

xk+1 = xk + δRaxk

(7)

where Rr , Rt , Re, and Ra are random matrices. Each
operator has one parameter, and they are α, β, γ , and δ. The
detailed information regarding STA can be found in [31].

The standard STA is widely used in practice, but the
main disadvantage is that it may fall into a local optimum.
The main reason is that the search abilities of the four
search operators in the STA are limited. However, the search
abilities of the operators are dependent on their parameters
in the algorithm. In other words, when the parameters of
the operators are different, their search abilities are quite
distinct. In the STA, the two most important operators
are rotation transformation and expansion transformation.
The function of rotation transformation is to search the
solutions in a hypersphere and α is an important parameter
for controlling the radius of the hypersphere. The function
of the expansion transformation is to search the solutions in
a fixed range and γ is an important parameter for controlling
the range. Unfortunately, in the standard STA, the value of
α is divided by a fixed constant in each iteration and γ

does not change. Hence, in order to search effectively and
efficiently, the values of α and γ should be automatically
adjusted.

In this study, an adaptive α can be automatically adjusted
according to the current iteration and the number of
iterations. The evolution of α is divided into three stages:
(1) slow decrease, (2) rapid decrease, and (3) tendency to be
stable. The expression is described as follows:

α = α ×
(
1 − 0.5

1 + |l − 2
L
|1.6

)
, (8)

where l is the current iteration and L is the number of
iterations.

Meanwhile, an adaptive γ can be automatically adjusted
according to the current iteration, the number of iterations,
and the fitness value. When the minimum fitness in the
current iteration is less than the current best fitness, γ

will be decreased according to the current iteration and
the number of iterations. In contrast, γ will be increased
exponentially with a base e. The expression is described as
follows:

γ =
{

γ e(1− l
L

) if fmin ≥ fs

γ × (1 − l
L+1 ) if fmin < fs

(9)

where fmin represents the minimum fitness in the current
iteration and fs represents the current best fitness.

HSVR Parameter Selection Based on ASTA

In this subsection, we describe the optimization process
regarding the parameter selection of the HSVR model
based on the ASTA. First, because the Gaussian radial
basis function (RBF) kernel function is widely used, it
was selected as the kernel function in the HSVR model.
Hence, there are five parameters that need to be optimized:
C, σ , ε, ν, and ω. C is the regularization parameter and
σ is a free parameter of the RBF kernel function. For ε-
SVR, ε controls the width of the ε-insensitive zone. For
ν-SVR, ν can affect the number of support vectors used
to construct the regression function. ω is the weight of the
HSVR model. The ASTA is used for automatic parameter
tuning in the HSVR model. Thus, the whole optimization
process is performed automatically, and the overall process
of the ASTA-HSVR can be summed up in the following
eight steps shown in Fig. 3.

Step 1. The input dataset is split into training and testing
sets.

Step 2. The parameters of the HSVR model, C, σ , ε, ν,
and ω, are coded in the ASTA.

Step 3. The parameters of the ASTA, the number of
iterations, search enforcement(SE), α, β, γ , and δ

are set.
Step 4. An initial solution is generated. Each solution in

the ASTA represents a choice of (C, σ , ε, ν, and
ω).

Step 5. At each iteration, the ASTA uses four operators in
turn to generate candidate solutions. The solution
that has a better fitness value with the training set
survives to the next iteration. Then, α and γ are
updated according to Eqs. 8 and 9.

Step 6. The k-fold cross validation technique is employed
to evaluate the fitness. The mean absolute
percentage error function (MAPE) is used as the
fitness function.

MAPE = 1

n

n∑
i=1

|A(i) − F(i)

A(i)
|, (10)

where A(i) is the actual value and F(i) is the
forecast value.

Step 7. If the termination condition is met, the optimiza-
tion process is stopped and the HSVR model has
been trained completely. Otherwise, the algorithm
returns to step 5.

Step 8. The HSVR model is used to forecast energy
consumption in the testing set and the forecasting
results are output.
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Fig. 3 Flow chart of the
ASTA-HSVR

Case Study from the Nonferrous Metallurgy
Industry

In this section, two cases of energy consumption from the
nonferrous metallurgy industry in China are used to demon-
strate the performance of the proposed method (ASTA-
HSVR). Two different kind of experiments are considered:
comparison with other meta-heuristic algorithms and com-
parison with the non-iterative algorithms. The first one
is similar to a vertical comparison, which is based on
the HSVR model, but with different meta-heuristics algo-
rithms. These meta-heuristic algorithms include genetic
algorithms (GA) [11], particle swarm optimization (PSO)
[18], success-history-based adaptive differential evolution
with linear population size reduction (LSHADE) [20],
and LSHADE with a semi-parameter adaptation hybrid
with covariance matrix adaptation evolutionary strategies
(LSHADE-SPACMA) [14]. The second one is similar to
a horizontal comparison, which is compared to the non-
iterative algorithms. These non-iterative algorithms include
random vector functional link (RVFL) networks, RVFLwith
empirical mode decomposition (EMD-RVFL), and RVFL
with discrete wavelet transform and empirical mode decom-
position (DWT-EMD-RVFL) [1]. To measure the forecast-
ing accuracy experimentally, some popular statistical indi-
cators were used, including mean error (ME), mean absolute
error (MAE), mean percentage error (MPE), and mean abso-
lute percentage error function (MAPE). The expressions
used are as follows:

• ME = 1
n

∑n
i=1(A(i) − F(i))

• MAE = 1
n

∑n
i=1|A(i) − F(i)|

• MPE = 1
n

∑n
i=1(

A(i)−F(i)
A(i)

)

Here, A(i) is the actual value and F(i) is the forecast value.
Each model in the experiment was run 20 times and models

Table 1 Initial parameters of the comparative algorithms

Algorithm Parameter

GA [11] Size of population = 20

The mutation probability, p1 = 0.01

The crossover probability, p2 = 0.4

Maximum number of iterations = 100

PSO [18] Size of population = 20

The acceleration coefficients, c1 = c2 = 2

The inertia weight, w = 1

Maximum number of iterations = 100

LSHADE [20] The initial population size, rNinit
= 20

Archive rate, rarc = 2.0

Pbest individuals rate, p = 0.1

Historical memory size, H = 5

LSHADE-SPACMA [14] The initial population size, NP = 18*D

Pbest individuals rate, Pbest = 0.11

Memory size, H = 1.4

Archive rate, Arc rate = 5

Probability variable, FCP = 0.5

Learning rate, c = 0.8

The threshold = max nfes/2

ASTA SE = 20

α = 1, β = 1, γ = 1, δ = 1

Maximum number of iterations = 100
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Table 2 Forecasting errors for the proposed model using different optimization methods for the yearly dataset

Metrics HSVR

GA PSO LSHADE ELSHADE-SPACMA ASTA

ME 13.4172 16.3383 − 2.6969 − 8.3383 − 8.9161

MAE 101.7617 101.6423 69.6057 64.3412 64.0494

MPE − 0.0043 − 0.0025 0.0025 0.0017 0.0019

MAPE 0.0443 0.0440 0.0289 0.0266 0.0265

Fig. 4 Iterative curves of the
MAPE values obtained by the
ASTA-HSVR for the yearly
dataset
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Fig. 5 Comparative curve of the
actual and forecast values of the
proposed hybrid model for the
testing dataset
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Table 3 The initial parameters
of the RVFL Algorithm Parameter Value

RVFL Number of hidden neurons 10000

Link +

Bias +

Activation function “sig”

Random seeds 0

Mode 1

Random type Uniform

Scale 1

Scale mode 2
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Fig. 6 Comparative curve of
actual and forecast values of the
RVFL for the test dataset
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with the lowest MAPE among the 20 trials were selected
and presented in this paper. All these experiments were
implemented on a personal computer with Intel Core i7 Duo
CPU at 2.8 GHz, with 16 GB RAM, using MATLAB.

Case 1: Power Consumption in Nonferrous
Metallurgy Industry

In the first case, a yearly dataset about power consumption
in the whole nonferrous metallurgy industry was used to
evaluate the performance of the hybrid model. The power
consumption dataset contains yearly data from 1978 to
2015.

Comparison with Other Meta-heuristic Algorithms

First, the proposed method is compared with the HSVRwith
other meta-heuristics algorithms. To guarantee that all the
comparative algorithms achieved satisfactory performance,
we took the suggestions of their corresponding literature
sources to set the values of the related parameters, as listed
in Table 1. Table 2 shows the comprehensive results of
the experiment. Figure 4 presents the iterative curves of
the MAPE values obtained by the ASTA-HSVR for the

experiment. Figure 5 shows the comparative curve of actual
and forecast values of the proposed hybrid model for the
testing dataset. We can see that the MAPE obtained by the
proposed method for the testing dataset is 0.0265, which
is much lower than that obtained by the hybrid model
with GA or PSO, and similar to that obtained by the
hybrid model with LSHADE or LSHADE-SPACMA. On
the other three performance metrics, the proposed method
is also better than the hybrid model with GA or PSO, and
similar to the hybrid model with LSHADE or LSHADE-
SPACMA. Hence, the proposed method is very effective
for this case. From the results, the forecasting errors by
the ASTA-HSVR method are very small. The explanation
is that the HSVR model is more flexible, and the adaptive
state transition algorithm improves the global search ability
of the traditional state transition algorithm.

Comparison with the Non-iterative Algorithms

Next, the proposed method was compared with the non-
iterative algorithms. Table 3 shows the initial parameters of
the RVFL. Figures 6 and 7 show the comparative curve of
actual and forecast values of the RVFL and DWT-EMD-
RVFL for the test dataset. Table 4 shows the comprehensive

Fig. 7 Comparative curve of
actual and forecast values of the
DWT-EMD-RVFL for the test
dataset
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Table 4 Forecasting errors for the non-iterative algorithms and for the proposed model for the yearly dataset

Metrics Learning models

RVFL EMD-RVFL DWT-EMD-RVFL ASTA-HSVR

ME 0.7277 7.3620 0.4870 − 8.9161

MAE 67.4542 108.5006 104.1256 64.0494

MPE − 0.0146 0.0048 − 0.0050 0.0019

MAPE 0.0463 0.0395 0.0331 0.0265

Table 5 Running time (in
seconds) for case 1 RVFL EMD-RVFL DWT-EMD-RVFL ASTA-HSVR

1.00 1.08 1.24 6.16

Table 6 Forecasting errors for the proposed model using different optimization methods for the monthly dataset

Metrics HSVR

GA PSO LSHADE ELSHADE-SPACMA ASTA

ME − 1.0622 − 1.1691 0.8895 0.9091 0.9777

MAE 16.2890 15.2524 7.6832 7.6268 7.6230

MPE − 0.0057 − 0.0058 0.0014 0.0015 0.0016

MAPE 0.0432 0.0405 0.0204 0.0202 0.0202

Fig. 8 Iterative curves of the
MAPE values obtained by the
ASTA-HSVR for the monthly
dataset
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Fig. 9 Comparative curve of
actual and forecast values of the
proposed hybrid model for the
test dataset
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Fig. 10 Comparative curve of
actual and forecast values of the
RVFL for the test dataset
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Fig. 11 Comparative curve of
actual and forecast values of the
DWT-EMD-RVFL for the
testing dataset
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Table 7 Forecasting errors for the non-iterative algorithms and for the proposed model for the monthly dataset

Metrics Learning models

RVFL EMD-RVFL DWT-EMD-RVFL ASTA-HSVR

ME 0.1699 − 0.4016 0.1709 0.9777

MAE 10.9603 10.3889 8.6596 7.6230

MPE − 0.0017 − 0.0031 − 0.0014 0.0016

MAPE 0.0292 0.0278 0.0231 0.0202

Table 8 Running time (in
seconds) for Case 2 RVFL EMD-RVFL DWT-EMD-RVFL ASTA-HSVR

0.94 1.10 1.32 6.98
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results of the experiment. Table 5 shows the total running
time of different methods. On the one hand, we can see
that the ASTA-HSVR method takes more time than the
non-iterative algorithms. On the other hand, although the
ASTA-HSVR is worse than the non-iterative algorithms
about ME, the forecasting by the ASTA-HSVR is a bit
better than the non-iterative algorithms on the other three
performance metrics. Hence, although the ASTA-HSVR
method takes more time, the results indicate that it is still a
promising method for the yearly dataset.

Case 2: Power Consumption in the Electrolytic
Aluminum Industry

In the second case, a monthly dataset about power
consumption in the electrolytic aluminum industry was used
to evaluate the performance of the hybrid model. The power
consumption dataset contains monthly data from September
2011 to June 2018.

Comparison with Other Meta-heuristic Algorithms

The proposed method was first compared with the HSVR
with other meta-heuristics algorithms. The values of the
parameters related to the meta-heuristic algorithms are
shown in Table 1. Table 6 shows the comprehensive results
of the experiment. Figure 8 presents the iterative curves
of the MAPE values obtained by the ASTA-HSVR for the
experiment. Figure 9 shows the comparative curve of actual
and forecast values of the proposed hybrid model for the
test dataset. We can see that the MAPE obtained by the
proposed model for the test dataset is 0.0202, which is
also much lower than that obtained by the hybrid model
with GA or PSO, and similar to that obtained by the
hybrid model with LSHADE or LSHADE-SPACMA. From
the other three performance metrics, we can see that the
conclusion is the same. Therefore, the proposed method is
very effective for the monthly dataset. We can also see from
the comprehensive results that the proposed method has
good performance in this case.

Comparison with the Non-iterative Algorithms

Second, the proposed method was compared with the non-
iterative algorithms. Table 3 shows the initial parameters of
the RVFL. Figures 10 and 11 show the comparative curve of
the actual and forecast values of the RVFL and DWT-EMD-
RVFL for the test dataset. Table 7 shows the comprehensive
results of the experiment. Table 8 shows the total running
time of the different methods. As we can see from Table 7,
the ranking for MAPE and MAE is ASTA-HSVR > DWT-
EMD-RVFL > EMD-RVFL > RVFL, and the ranking for
MPE is DWT-EMD-RVFL > ASTA-HSVR > RVFL >

EMD-RVFL. The results indicate that the ASTA-HSVR
model is more promising than other models in terms of
MAPE and MAE. Although the ASTA-HSVR method takes
more time, it shows good performance for the monthly
dataset.

Conclusions

In this study, a hybrid support vector regression with
adaptive state transition algorithm (ASTA-HSVR) was
developed and successfully applied for forecasting the
energy consumption in the nonferrous metallurgy industry.
For this method, a hybrid support vector regression (HSVR)
forecasting model was presented, which consists of a linear
weighting of ε-SVR and ν-SVR. In addition, in order to
optimize the parameters of the HSVR, an adaptive state
transition algorithm (ASTA) was developed based on a
state transition algorithm. Two cases of energy consumption
from the nonferrous metallurgy industry in China were
used to demonstrate the performance of the proposed
model. The results indicate that the ASTA-HSVR has good
performance. However, it should be noted that outliers
are not considered in this study. In the future, we expect
to extend the ASTA-HSVR algorithm to include energy
consumption forecasting problems with outliers.
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